Guidance Laws for Autonomous Underwater Vehicles

نویسندگان

  • Morten Breivik
  • Thor I. Fossen
چکیده

About 70% of the surface of the Earth is covered by oceans, and the ocean space represents a vast chamber of natural resources. In order to explore and utilize these resources, humankind depends on developing and employing underwater vehicles, not least unmanned underwater vehicles (UUVs). Today, UUVs encompass remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). The first ROVs were built in the 1950s, put into commercial use in the 1980s, and are mostly used today by the offshore oil and gas industry to carry out inspection and intervention operations at subsea installations (Antonelli et al. 2008). These vehicles are teleoperated by connection to a surface vessel through an umbilical cable that provides them with power and telemetry. In particular, the dependence on a tether represents a considerable challenge for ROV deepwater operations (Whitcomb 2000). On the other hand, AUVs are free-swimming vehicles that rely on their own energy supply. The first AUVs were built in the 1970s, put into commercial use in the 1990s, and today are mostly used for scientific, commercial, and military mapping and survey tasks (Blidberg 2001). Developed in cooperation between Kongsberg Maritime and the Norwegian Defence Research Establishment, the HUGIN series represents the most commercially successful AUV series on the world market today (Hagen et al. 2003). HUGIN vehicles have been employed for commercial applications since 1997 and for military applications since 2001. The workhorse HUGIN 3000 has an impressive 60 hours endurance at 4 knots speed with payload sensors running. Currently, the main challenges for AUVs encompass endurance, navigation, communication, and autonomy issues. Traditionally, ROVs and AUVs have been assigned different tasks due to different strengths and weaknesses, see Fig. 1. In the future, hybrid ROV/AUV designs are expected to bridge the gap between these two main UUV types, utilizing the best of both worlds (Wernli 2000). Regarding motion control research for UUVs, Craven et al. (1998) give an overview of modern control approaches with an emphasis on artificial intelligence techniques; Roberts & Sutton (2006) treat guidance, navigation, and control issues for unmanned marine vehicles with an emphasis on underwater vehicles; while Antonelli et al. (2008) present a state-of-theart survey of control-related aspects for underwater robotic systems. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Guidance Laws Applicable to Unmanned Underwater Vehicles

The main problem in bringing autonomy to any vehicle lies in the design of a suitable guidance law. For a truly autonomous operation, the vehicle needs to have a reliable Navigation, Guidance and Control (NGC) system of which the guidance system is the key element, which generates suitable trajectories to be followed. In this survey paper, various guidance laws found in the literature and their...

متن کامل

Intelligent Guidance and Control Laws for an Autonomous Underwater Vehicle

In this paper, intelligent guidance and control laws are developed for an autonomous underwater vehicle to engage underwater targets. The engagement of underwater targets is suffered from uncertainties of the complicated underwater environment, short detecting range of the sonar seeker, the low speed ratio between vehicle and target, and longtime operations but no accurate positioning technique...

متن کامل

Investigation on Nose and Tail Shape Effects on Hydrodynamic Parameters in Autonomous Underwater Vehicles

Development of autonomous underwater vehicles (AUVs) which meets the design constraints and provides the best hydrodynamic performance is really an important challenge in the field of hydrodynamics. In this paper a new profile is used for designing the hull of AUVs. The nose and tail profiles of an AUV using presented profile is designed such that it can properly consider the length constraints...

متن کامل

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008